IMPLEMENTATION OF RECURSIVE DIGITAL FILTERSINTO VECTOR SIMD DSP
ARCHITECTURES

J.P. Robdlly, G. Cichon, H. Seidel and G. Fettwels

Vodafone Chair for Mobile Communications Systems
Dresden University of Technology
01062 Dresden Germany
e-mail: robelly@ifn.et.tu-dresden.de

ABSTRACT

Recently, digital signal processors featuring vector SIMD
instructions have gained renewed attention, since they offer
the potential to speed up the computation of digital signal
processing algorithms. However, when implementing re-
cursive algorithms the maximum achievable speed up fac-
tors are upper bounded. In this paper we investigate these
performance limitations when pure recursive filters are im-
plemented into parallel DSP architectures. We show that by
applying algebraic transformations a block formulation of
any recursive filter can be derived, which can be efficiently
implemented into SIMD DSP architectures. We also show
that the number of additional vector operations introduced
by the transformation grows linearly with the level of par-
allelism and that it does not depend on the recursion order.
These results enable the achievement of important speed up
factors even for low order recursions. Moreover, we intro-
duce a suitable algebraic notation of the block formulation
of the recursive filter, which reveals the processor instruc-
tions required to implement the algorithm into the SIMD
DSP.

1. INTRODUCTION

Parallel SIMD DSP architectures offer the potential to in-
crease the data transfer rates between memory and computa-
tional resources, since data vectors residing on memory are
accessed in parallel in order to be processed. This enables
the achievement of speed up gains in the implementation of
DSP algorithms into this processor architectures.

However, there are many algorithms in digital signal
processing that are recursive and therefore cannot be easily
mapped onto parallel DSP architectures. These algorithms
present direct data dependencies, which naturally lead to a
serial formulation of the algorithm that is not well suited for

This work was supported in part by the German Science Foundation
(Deutsche Forschungsgemeinschaft, DFG) under grant SFB358.

the parallel memory access capacity of SIMD DSP archi-
tectures. Thus, this type of algorithm becomes a bottleneck
that governs the overall performance of the parallel DSP.
Among the most prominent examples we can mention IR
filters, adaptive algorithms and decision feedback equaliz-
ers. In this paper we are concerned with the analysis of pure
recursive filters.

The idea of applying algebraic transformations to speed
up the implementation of recursive filters has been thor-
oughly studied in the past [1]. However, it has not been ex-
tensively applied to find suitable implementations of recur-
sive digital filters into SIMD DSPs due to the wide spread
believe that the overhead introduced by such transforma-
tions hinders the achievement of important speed up factors.
This paper presents a mathematical framework for finding
efficient realizations of recursive digital filters into parallel
DSP architectures based on algebraic transformations.

2. PARALLEL DSP ARCHITECTURES

In this section we introduce a generic parallel DSP concept.
In figure 1 a block diagram of a parallel DSP architecture is
illustrated. We will assume throughout this paper a scalable
number of data paths for this architecture. Furthermore, we
assume that the following features are supported:

1. Each memory access requires one clock cycle to be
completed.

2. Fetch of data vectors and and data scalars is possible.
3. Modulo address arithmetic is available.

4. Broadcast data transfers from memory to the proces-
sor register file are supported and require one clock
cycle to be executed.

5. Data vector shift (Zurich-Zip * data transfer) is avail-
able and is executed in one clock cycle.

1Also known asthe IBM Zurich-Zip data transfer

Data RAM (o=
i i i
m PCU
i i 7

Fig. 1. Block Diagram of a Parallel Processor Architecture

6. MAC operations are executed in one clock cycle.

We also assume that one iteration of the recursive fil-
ter is completed once the resulting data has been written
into memory. This model will be used later to compare the
achievable speed up factors in realizations of recursive fil-
ters using a scalable number of parallel data paths with re-
spect to the realization into a serial DSP with only one data
path. In order to make a fair comparison, all the assump-
tions mentioned above hold for the serial DSP case. Of
course, vector data manipulation features like data vector
fetching, data broadcast and Zurich-Zip, are not supported
by the DSP with one MAC unit.

3. BLOCK FORMULATION OF RECURSIVE
FILTERS

The serial formulation of a pure recursive filter of order p
can be described by the following expression

wm=mm+2hww—n 1)

A state space representation of this algorithm can be de-
scribed by the following equations:

z(k+ 1) = Az(k) + Bu(k)

where z(k) = [z1(k) z2(k) z, (k)] is the state
vector at time k. It is important to note that in recursive
filters the state vector contains past computed results. Thus,

zi(k) = y(k —1) for i=1,2,...,p (2)

For the system matrices we have

ai a2 ap
1 0 0

A= : ; @)
0 1 0

B=[10 ... 0], 4)

C= [a1 as ce ap], (5)

D=1 (6)

Our aim is to raise the serial algorithm in order to find
a block formulation that deals with input vectors to produce
output vector. Thus, we define the input and output vectors
of the raised system as

u(k) = [u(Nk) u(Nk+1)
y(k) = [y(Nk) y(Nk+1)

where N is the raising factor. The resulting block formula-
tion of the recursive filter can be described by the following
raised state-space equations

2Bk 4 1) = AWEILEl(k) 4+ BEly(k) @
y(k) = C¥z® (k) + DFlu(k). (8)

The system matrices of the resulting raised system can be
derived from the system matrices of the original serial sys-
tem as follows [3]

u(Nk+ N -1)]"
y(Nk+N —1)]7,

AR = 4N, (©)

BIFEl = [AN-1B AN-2p AB B], (10

C
cim— | A , (11)
Cav-

D 0 0
pw | P T

C’A’\.’—Z’B C’AJ‘}—Z”B D

The state vector of the raised system is defined as follows

al® (k) = z(NF). (13)

Thus, according to (2) we can write for the state vector of
the raised system

2 (k) = [y(Nk - 1) y(NE—p)]". (14)

Thus, taking equations (7)-(14) and defining the system ma-
trices of the original serial system as in equations (3)-(6),
we obtain a block formulation for recursive filters that is
known as incremental block processing [1]. We obtained
this representation using a transformation known as the lift-
ing isomorphism or raising procedure. It is to remark that
the matrix Df! is the overhead matrix introduced by the
transformation.

3.1. Numerical Example

Consider a recursive filter of second order p = 2 with coef-
fic!ents a = s gr?d az = —%. Applying the ijting isomor-
phism with a raising factor N = 3, we obtain from equa-
tion (8) the following block representation of the second or-
der recursive filter.

y(3k) 5/ —1/4 _
y@Bk+1) | = | 21/16 —5/16 [yg: - ;g]
y(3k + 2) 85/64 —21/64 | LY
QE;) C‘[;‘] z[Rl(k)
1 0 0 w(3k)
+| 5/4 1 0| uBGk+1)
21/16 5/4 1 | | u(3k+2)
IR u‘(;)

3.2. Tensor Product Representation of RecursiveFilters

Tensor product factors have a direct interpretation in vec-
tor SIMD processors [4]. Thus, tensor products provide a
mathematically correct algebraic syntax that can be directly
translated into processor instructions. We adopt in this pa-
per the tensor product notation in order to reveal the neces-
sary instructions to implement the algorithm. For the pure
recursive filter, equation (8) can be written in the following
way

y(k) =" (y(Nk — i) ® In)c; +

=t)
feed‘gack
N-1
(D Iv)u(k)+ Y (CAT'B® Iy) Ziu(k),
qg=1
feedf:)rrward

where c; are vectors formed by the columns of the C1#] ma-
trix and the operator ® is defined as the Kronecker product.
In the tensor product representation of the pure recursive fil-
ter we have defined Iy as the N x N identity matrix and
the N x NN shift matrix Z as follows.

0 0 ... 0

1 0 ... 0
ZN =)

0 1 0

3.3. Discussion

From the tensor product formulation of the algorithm it be-
comes obvious that the computation of the overhead ma-
trix DI requires NV additional vector operations, whereas
the complexity of the feedback part of the algorithm grows

linearly with the filter order p. Therefore, the overhead com-
plexity remains constant regardless of the filter order for a
fixed raising factor . In fact, if p > N, the complexity of
the overhead is negligible in comparison to the complexity
of the feedback part.

The tensor product representation of the algorithm also
reveals the necessary processor instructions to implement
the algorithm. In equation (15) we can observe the com-
putation of the feedback part of the recursive filter with the
interpretation of each algebraic structure in a SIMD instruc-
tion. As we can observe the computation consists of vector
MAC operations and broadcast data transfers. The broad-
cast operation is represented as the Kronecker product be-
tween a scalar and an identity matrix. This is nothing else
than the distribution of the scalar over the different MAC
units of the processor. The computation of the feedforward
part is shown in (16). We can observe that it requires an
additional instruction, namely the computation of a vector
shift.

Our intention with the adoption of the tensor product
notation is to use a unified language that is sufficiently gen-
eral to describe algorithms and derive the necessary SIMD
instructions from this algebraic description. Although one
might find different ways to express mathematically the nec-
essary instructions, we think that tensor products together
with the definition of some additional operators like the shift
matrix of our example is general enough to deal with algo-
rithms of different complexity.

Vector MAC
P—1 h
S WWNk—i-1)®Iy) e (15)
i=0 > d

Broadcast y(Nk—i—1)

Component-wise Multiplication

——
D& In)u(k) +
——

Broadcast D
Vector MAC (16)
N-1 K
Y (CA™'BeIy) Z%(k)
a=1 S——

Broadcast C Ae—1 B Vector Shift ¢ Positions

4. SCALABILITY ANALYSIS

In this section we analyze the achievable speed up factors
when a recursive filter of order p formulated as in section 3
is implemented into a parallel DSP architecture with a par-
allel number of data paths IV as discussed in section 2. The
speed up factor is the relation between the number of neces-
sary cycles to compute L filter results in the serial DSP and
the number of necessary cycles to compute L filter results
in the parallel DSP. In table 1 we can observe the number

Number of Cycles
Memory Access (2p+2)L
MAC pL
Total Number of Cycles (3p+2)L

Table 1. Number of cycles for filter of order p and L input
samples in a serial DSP

Number of Cycles
Memory Access (2p+ N + 2)(L/N)
MAC (N +p)(L/N)
Zurich Zip (N —1)(L/N)
MAC init (L/N)
Total Number of Cycles | (3N + 3p + 2)(L/N)

Table 2. Number of cycles for filter of order p and L input
samples in an IV parallel DSP

of necessary cycles to compute L input samples into a serial
DSP architecture. In table 2 we observe the total number
of cycles required to compute L filter results realized in a
parallel DSP with N data paths.

Taking the total number of cycles of table 1 and 2 we
have the following speed up factor

n(3p +2)

speedup = < ST 2

A7)

In figure 2 we have plotted equation (17) for different
values of NV for a recursive filter of order p. From this dia-
gram we can observe that the achievable speed up factor is
upper bounded. Once this upper bound has been reached,
the speed up factor remains constant even if the number of
parallel data paths and thus, the available processing power
is incremented. It is also important to remark that this upper
bound is about the filter order.

Another way to look at the speed up factors is offered in
figure 3. Using this figure one can determine the necessary

i i
16 64 128

2 4 8 32
Number of Parallel Data Paths N

Fig. 2. Speedup vs. Level of Parallelism for recursive digi-
tal filters of different orders.

N=128

; i i i i
10 20 30 40 50 60
Recursion Order p

Fig. 3. Speedup vs. Filter Order p for different number of
data paths V.

number of data paths in order to achieve some speed up fac-
tor for a recursive filter of a certain order. From this figure
we can observe that the increment on performance is also
limited by the available processing power.

5. CONCLUSION

Parallel DSP architectures can speed up the computation
of digital signal processing algorithms. In this paper we
showed that by means of algebraic transformations, it is
possible to find block formulations of pure serial algorithms.
We have shown that the increment on the achievable speed
up for the implementation of recursive filters into vector
SIMD architectures is upper bounded to a factor that cor-
responds the order of the filter. We have also introduced a
suitable algebraic notation that reveals the required SIMD
instructions to implement the algorithm. This algebraic no-
tation can be used to automate code generation.

6. REFERENCES

[1] K. K. Parhi and D. Messerschmitt, “Pipeline inter-
leaving and parallelism in recursive digital filters, part
ii: Pipelined incremental block filtering,” |EEE Trans.
Acoust.,Speech Signal Processing, vol. ASSP-37, no. 7,
pp. 1118-1135, July 1989.

[2] D. I. Moldovan, Parallel Processing: From Applica-
tionsto Systems. San Mateo California: Morgan Kauf-
mann, 1993.

[3] A. Feuer and G. C. Goodwin, Sampling in Digital Sg-
nal Processing and Control. Boston,Basel,Berlin:
Birkhaeuser, 1996.

[4] R. Tolimieri, M. An, and C. Lu, Algorithms for dis-
crete Fourier transform and convolution. New York:
Springer Verlag, 1997.

