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ABSTRACT 
 
Mobile communication systems, wireless and handheld terminals require low power, yet high 
performance DSPs. These DSPs are used in software defined radio applications and for 
computation of streaming media. To decrease time-to-market, development of these DSPs 
has to be done in a very short time. A design flow which is based on proprietary tools and 
powerful components from SYNOPSYS achieves this goal.  In this paper a design 
methodology based on a novel architecture template called synchronous transfer architecture 
is presented. In a use case study a 3.6 GFPLOP/s SIMD digital signal processor was 
implemented and taped out. The whole implementation process from system idea to netlist, 
hence Architecture, Design Verification, Test and Synthesis Strategy are described. 
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1.0  Introduction 
Mobile communications systems require high-performance low-power DSPs for enabling 
flexible and thus software based implementations of wireless standards. In [1], the CATS 
group of the Vodafone Chair presented the M3 DSP. It is implemented on 289 mm2 of a 
0.35µm CMOS technology, and it is able to run a 1024 point FFT in 55 μs while consuming 
less than 1W of power. However, it required a lot of engineering work to build it and also to 
program it efficiently in assembly language. 
For this reason, a new architecture for digital signal processors is required that allows for 
effective compiler support, and in which different algorithms share the available 
computational resources. 
The resulting hardware should still be suitable for high-performance, low-power applications, 
in order to be used for battery-powered mobile terminals. 
Furthermore, the design flow for the hardware implementation should be streamlined: As 
much as possible of the hardware models should be generated automatically from a core 
generator. Both the compiler and the core generator should use the same machine description 
in order to establish an integrated design flow (see Figure 1). 
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Figure 1: The Integrated Design Flow of MOUSE 

1.1 Synchronous Transfer Architecture (STA) 
In the Synchronous Transfer Architecture (STA), the functional units of a processor 
constitute a synchronous data flow network (see Figure 2). The switching matrix may 
implement arbitrary connections depending on the application, performance, and power-
saving requirements. 
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Figure 2: Architectural Template of STA 

This architectural templates omits the expensive crossbar switches of VLIW for the 
construction of bypasses between the functional units, and TTA ‘s local queues for collecting 
operands and superscalar controllers that determines when exactly an operation is to be 
started. The entire communication between functional units takes place synchronously.  
Another improvement of efficiency can be achieved by adopting SIMD architecture, in which 
several data processing resources can share a single instruction processing resource. In order 
to avoid instruction storage and dynamic scheduling overhead, STA proposes storing 
instructions in a compressed form that does not require many hardware resources to 
decompress. The most efficient ones seem to be 2D run-length encoding schemes [3]. 
Due to its regular structure combined with generic computational primitives, STA can 
effectively support compilers, as shown in [4]. 
It has successfully been demonstrated that systems which are based on this approach can be 
realized rapidly using the Mouse core generator developed by the CATS group. [5] presents 
an OFDM transceiver system which was realized in a very short time frame. 



SNUG Europe 2005  Development of a 3.6 GFLOP/s SIMD DSP 5

2.0 High-Level Design Flow 

 Figure 3: GENCORE: The core generation tool generates an RTL model of the design 
and all necessary tools for program development.  
 
The design flow of our core generator is depicted in Figure 3.  

2.1 ISA Layout 
The core generator first computes an optimized instruction set layout for the given 
architecture. For this purpose, the binary encodings for instructions and multiplexer controls 
are determined. The binary encodings also determine the bit width of the corresponding fields 
in the instruction word. Correlated control fields are placed close to each other in the 
instruction word in order to improve compression efficiency. At last, a report about the 
instruction encoding is generated. 
 

2.2 Simulation Models 
For simulation and software debugging purposes, a cycle accurate machine model in 
SystemC is generated. The core generator handles the features necessary to support STA and 
SIMD constructs effectively. The generated model contains generated behaviors for all 
instructions, as well as all code related to the switching matrix.  

2.3 Assembler 
The core generator also generates an assembler to support a human-readable entry of parallel 
programs. This assembler also handles instruction compression.  

2.4 Synthesis Models 
The core generator generates a synthesis friendly VHDL model. The generated parts consist 
of a VHDL package with constant definitions, a core toplevel with interconnection wires and 
multiplexers, different types of decompressing instruction decoders, register files with debug 
capability, memories using technology dependent hard-macros with debug capability, and 
stubs for the implementation of functional units. In addition to that, the core generator 
generates synthesis scripts for ASIC- and FPGA-libraries. A memory bus to access the 
internal memories is inserted automatically.  
The core generator makes no assumption on the implementation of the functional units. It 
turned out to be most advantageous to use optimized models obtained from third parties, e.g.   
the technology foundry, SYNOPSYS DesignWare, Altera Megafunctions, Xilinx DSP-
Blocksets, etc. 
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3.0 Synthesis Strategy 
The selection of a synthesis strategy for a fully automated design flow is not a trivial 
problem. On the one hand, synthesis results need to be competitive in order of maximum 
clock speed, area and power requirements, but on the other hand a unique synthesis process 
with low user interaction, regardless of the synthesized design is desirable for a rapid 
prototyping platform, in order, that the designer can concentrate on architectural features 
without mattering about synthesis. Figure 4 depicts the simplified version of the CATS 
design flow. As one can see, there are two branches from GENCORE. The SystemC path is 
important for the verification of the architecture. The HDL path can be used to verify, if 
design constraints can be met in every design stage. Not until both paths, SystemC as well as 
HDL, meet all the target constraints, the final design is reached. Using synthesis in early 
design stages helps finding and fixing architectural deficiencies and shortening design time. 
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Figure 4: Simpyfied CATS design flow 
 
Traditional design flows require experienced designers to get competitive synthesis results. 
Usually traditional methods lead to big numbers of manually modified highly heterogeneous 
compile scripts. Even minor architectural modifications can require changes to the scripts. 
Therefore, the system architect, working mainly with our machine description, needs to be an 
synthesis expert, too. This is unsatisfactory. To relieve the system architect from this 
auxiliary burden, it is desirable to automate the synthesis process as far as possible. 
Another important consideration is the execution time of the synthesis process. The 
functional verification of the whole synthesized design is a very challenging task. Especially 
designs using clock gating combined with pipelining appear to be very error prone. Most of 
the errors pop up in conjunction with a stall signal, which may be generated by the 
instruction decompression unit. Very often errors are not detected, since very special 
programs states are required to make them appear. Usually not all of these program states are 
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considered by the test engineer. Therefore some errors may remain undetected before tapeout 
of the chip. Simulating target applications on a synthesized model, including all features of 
the final design helps finding hidden errors. Shorten synthesis time results in faster iteration 
cycles until the design is fixed. 

3.1 Automated script generation 
How can the requirements formulated above be met by our core generation tool? The key to 
successful implementation of a script generator for Synopsys synthesis tools is the knowledge 
of the design environment. This knowledge founds on our design template. All parameters of 
the interconnection network are well known to the core generator. Based on these 
information, gencore is able to calculate constraints for an initial synthesis sweep. 
What compile strategy should be used? Synopsys supports bottom up, top down and mixed 
compile strategies. The answer is heavily dependent from design size and designers 
preferences. In almost every case a mixed compile is the best way. Bottom up compilation 
leads to longer run-times, while top-down compilation produces better results [6,7]. By 
default, Gencore selects a top down strategy for the parallel slice instances, while using the 
bottom up approach for the remaining design modules. The slice is compiled once and then 
instantiated the appropriate number of times. Thus, it is possible to apply hierarchical place 
and route in the backend tools. 
The fully automated compile script generator is not always able to produce appropriate 
results. For this reason it is possible top set parameters on the synthesis. Using this feature, 
one is able to overwrite the parameters generated by default. Further it is possible to add 
functionality like clock gating or scan chains. In cases where it is useful, the configuration is 
implemented hierarchically. This means, if we set a parameter like clock uncertainty for the 
toplevel of our design, Gencore will use excactly the same value for all submodules unless no 
other value is specified for them. 
After running the initial synthesis sweep, there are usually not all constraints met. This is, 
since Gencore can only estimate constraints from design environment. Now the characterize 
command is applied to the module instances and the characterization script is written out. If a 
characterization script for a module is present, this script is used for constraining in place of 
the core generator constraints. This process is repeated iteratively until all constraints are 
met. 
 

3.2 Toplevel synthesis 
The toplevel architecture is mainly conditioned by the manufacturer or PCB-designer, where 
the core level is conditioned by the requirements of the signal processing system.  
The interface between core and toplevel has usually not to be changed during the design 
process. To be most flexible on the toplevel, we are doing the toplevel design manually and 
assign the delays and loads of the input and output pads with the characterize command to the 
core. After assigning suitable I/O pads we use the SYNOPSYS BSD-COMPILER to add a 
TAP-Controller and a JTAG Interface. To access the memory and Registers over the JTAG-
Bus, additional JTAG-commands were added. If the JTAG-RST signal is raised, the clock 
tree is fed by the JTAG-clock instead of the PLL-clock. With a special JTAG-Register, a 
stepwise control of the core is possible. Other registers are used to start and stop the core and 
to read and write the memories. We automatically instance these control registers with the 
BSD-COMPILER. If the JTAG mode is active, all scan-chains of the core are connected to a 
single scan chain for simple access of all internal registers and to perform a core test after 
chip assembly. A single MBIST module in the toplevel is capable to test all implemented 
memories.  
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4.0 Samira DSP Core 
With the high-level design flow programming-tools, VHDL-Model, and Instruction Set 
Simulator are generated for the Samira DSP Core. Our synthesis strategy was used to produce 
the netlist.  
The Samira DSP Core is a DSP with 8 parallel SIMD Data Paths and a scalar data path for 
address generation and program control. The VLIW instructions are compressed using a 
mixture between Lempel-Ziv and differential compression. Each compressed instruction has 
a bitwidth of 128bit. The compressed instructions are decompressed to a 400bit Microcode. 
The decompression is done online and usually in a single cycle. If the information of the new 
instruction is too high, the VLIW decoder is able to stall the core until the decompression is 
completed. In every cycle 54 functional units in 8 SIMD data paths and 13 functional units in 
the scalar data path and their input multiplexers get new instructions. This allows for an 
extremely high utilization of the silicon area and the implementation of different signal 
processing algorithms ranging from mobile communication systems to streaming media 
applications. Clock gates for the functional units are inserted by the SYNOPSYS POWER 
COMPILER. The enable-signals for them are directly connected to the decompression 
decoder. Hence, if core stalls occur or not all functional units are used, the energy 
consumption is reduced to static power dissemination.  
To interconnect the SIMD vector data paths an interconnection unit is used. This 
interconnection unit is able to broadcast values from the scalar data path to the vector data 
paths and is doing shift operations on word granularity. Hence, it exchanges the data between 
the vector data paths. The Core has three different memories: A scalar memory, to store 
temporal control data, like address pointers, counters, and configuration data. The vector 
memory is used as main memory for data processing. In the instruction memory programs are 
stored. This advanced Harvard architecture allows synchronous access of control, program 
and data memory. In addition each memory consists of multiple blocks allowing for 
synchronous access from a Host-Processor like ARM or MIPS while a signal processing 
algorithm is computed. In Figure 5 the overall architecture of the SAMIRA DSP is shown. 
Figure 6 shows one of the 8 Vector Data Paths.  
 

 
Figure 5: Architecture overview of the SAMIRA DSP 
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Figure 6: Architecture of a Vector Data Path 

The SAMIRA-DSP-CORE is an accelerator for signal processing applications with hard real 
time constraints. In the first reference design it is connected to a FPGA with a NIOS II 
softcore as user interface. Having a simple SRAM interface it could be also connected to 
standard Microcontrollers. In our next silicon run an application tailored version will be 
placed in a complex system on chip as accelerator module.   
 

5.0 Floating Point Unit (FPU) 
Seventeen identical floating point units (FPU) are implemented in SAMIRA DSP: two FPUs 
in each data path of vector processing unit and one FPU in scalar processing unit. FPUs 
support operations addition (ADD), multiplication (MUL), float to integer (F2I) and integer 
to float (I2F) conversions on single-precision normalized 32-bit data types as specified by the 
IEEE-754 standard. SAMIRA architecture doesn't support operations on denormalized 
numbers. Restricted capabilities with respect to the IEEE standard are implemented. e.g. only 
rounding to nearest (even) and subset of exceptions flags like zero and infinity.               

5.1 FPU architecture overview 
Figure 7 shows the principal connection of FPU to other functional units through 
interconnection multiplexer network. In order to be conform to the rules of STA concept 
mentioned before, the result register have to be placed at the output of FPU. Because the 
implementation of FPU operations is a complex problem and can cause long time delays, 
further internal pipeline register stages are possible in order to meet the timing constrains. In 
our design, we placed the second pipeline stage on the inputs of the FPU (dotted line in 
Figure X). This solution separates FPU's internal logic from interconnection logic and 
eliminates internal FPU switching activity and power consumption during FPU idle time. The 
drawback is in the increased FPU latency to 2 clock cycles.  
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Figure 7: STA based FPU connection to the interconnection network 

In Figure 8 the internal block schema of the FPU microarchitecture is shown. It is evident, that 
in this concept independent parallel arranged modules for realization of arithmetic operations 
are implemented.  As mentioned before, two pipeline stages are implemented on both inputs 
and outputs of the FPU.  
 

 
Figure 8: Block schema of FPU 

5.2 FPU implementation 
The floating point operations are implemented using SYNOPSYS Design Ware (DW) 
floating point components and SYNOPSYS Module Compiler. Module compiler is a tool for 
synthesis and optimization of data paths using high level modeling with module compiler 
language (MCL). Some reasons we decided to use DW FP components and Module compiler 
are: 

• synthesized DW floating point components represent high quality hardware 
• DW floating point components are fully parameterizable and support IEEE floating 

point number format 
• accuracy conforms to the IEEE standard 
• due to high-level modeling and using IP library drastically reduce design time 

6.0 Test and Verification 

6.1 Testbench Generation  
From the generated SystemC model the modules describing the functional units of the DSP 
are extracted. A wrapper capable to read a proprietary verification language is used to 
instantiate the extracted modules. After reading the verification description of the DSP core 
the executable, generated from wrapper and extracted SystemC module, produces test 
patterns for the RTL description of the functional unit.   
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An automatically generated Verilog testbench instantiates the RTL model and reads the test 
patterns and expected results. The functional unit is stimulated with the test pattern and the 
results are checked.  
The same method is used to test the synthesized functional unit. All checks are invoked 
automatically on all functional units. This White Box verification methodology is used during 
the whole RTL implementation phase.   

6.2 Automated software-based verification 
We used the method of automated software-based verification for in-system verification of 
the floating point units. Because of generality of the method, we extended this approach also 
for testing all functional units in STA based DSP architectures.  
STA architecture approach is based on the interconnection of functional units (FU) and 
synchronous transfer of FU values. Structure, functionality and properties of STA 
architecture are stored in machine description file. An instruction set simulator (ISS) and 
hardware model of STA architectures are generated from machine description automatically. 
All information regarding operations and connections to a functional unit are stored in the 
machine description file. Explaining this concept, we define now the procedure for automated 
software-based verification: 

• suppose - all memories and register files of ISS and HW model are verified and are 
correct, 

• extract the information - from machine description for selected FU concerning 
operations and connections, 

• select - operation and connections of FU to be verified 
• generate test patterns - for selected operation and create memory image from these 

patterns 
• generate the assembler program - that reads the test patterns from memory to tested 

FU directly or through register file, perform selected operation on selected FU and 
write result to memory 

• start testbench - 
o start simulation -  load test pattern memory image and assembled program to 

processor memories of ISS and HW simulator and execute test program 
o read results - from ISS and HW simulator memories after execution 
o compare results -  for correctness 

• go to the next test 
 
The presented verification method represents extension of the existing verification 
methodology e.g. black, white or gray box verification. The main advantage of this method is 
in automation of verification process. Verification environment doesn't depend on 
architecture modifications. Machine description file and library of test pattern generators 
represents only input parameters of the verification process. 

6.3 Blackbox Verification 
Blackbox Verification is used to verify the overall architecture in selective use cases.  We are 
running standard signal processing algorithms on the architecture and compare them with the 
results of a Matlab™ testbench. After a program is run on the SystemC and RTL Model the 
memory content of both models is compared. If the memories are equal it is shown that the 
SystemC and RTL-Model behave equal running this special algorithm. It is not proven that 
the both architectures are equivalent. Even so, this kind of functional verification of the 
architecture is capable of testing the architecture for real world applications. This increases 
the trust to the implementation. Using a VCD-Diff program variations between SystemC 
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model and RTL-Model are detected and could be visualized using VirSim. Our testcases for 
the implemented SAMIRA DSP are ranging from FFT, over DCT to a complete 
implementation of a LMS-algorithm.  

6.4 Design for Test 
To perform end of line tests, scan chains were inserted into the core. 9 parallel scan paths 
routed through external I/O pads allow for a fast core tests. TetraMAX was used to generate 
11354 test pattern achieving 91.11% test coverage for the full chip. Hence, the additional 
logic in the toplevel for MBIST and JTAG is not included into the scanchain, the core 
coverage is approximately around 95%. Hence, most of the die area is consumed by the 
memories, the MBIST module is most important. The MBIST-module writes the whole 
memory with test patterns and performs an automatic check after that. This is done three 
times for each memory module. A single I/O pad indicated, if the MBIST process was 
successful or not.  

7.0 Results 

7.1 Core Synthesis 
Using our synthesis approach mentioned above, we are able to synthesize our core, including 
Synopsys DesignWare floating point units, PowerCompiler clock gating and DFTCompiler 
testability logic within 95 minutes on an Intel Pentium4 machine with 3GHz clock speed and 
4GB of RAM. Thereby we can meet all timing constraints.  
 

Technology library UMC 0.13µm 
Maximum clock speed 212 MHz 
Logic size 2.4 mm² 
Core size (incl. memories) 13.2 mm² 
Toplevel size (incl. JTAG, I/O) 14.2 mm² 
NAND gate equivalents 460 k 

Table 1: Synthesis results 

The speed of our design is mainly memory limited. By inserting additional pipelining into 
some of the functional units, we would be able to double the current clock speed easily if 
memory speed limitation could be overcome. 

7.2 FPU Synthesis  
We synthesized the DW floating point components using our target standard cell technology 
library UMC 0.13um. The synthesis results we achieved for maximum speed criterion are 
summarized in Table 2. As seen in the table, the most critical part of the FPU from point of 
view of delay time is, as expected, FP adder. The adder delay of 4.5 ns is lower than the 
projected maximum delay 5ns (200MHz). In this case, we need not implement any additional 
internal pipeline stages into FP units. After performing the global synthesis and place&route 
we achieved the target clock frequency 212MHz, what is over projected frequency.  
In the next designs we plan to pipeline floating point units to achieve higher performance and 
reduce power consumption. Module compiler enables automatic pipelining. For low power 
architectures and clock gating mechanism it is necessary to control each pipeline stage 
separately.   
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FP unit Area 
[um x um] 

Delay 
[ns] 

Adder 16840 4.5 
Multiplier 32713 3.0 
Float to integer 9687 1.8 
Integer to float 10932 2.3 
Total 70172 11.6 

Table 2: Synthesis results for floating point units using SYNOPSYS module compiler and Design Ware 
floating point components. The synthesis criterion was for the maximum speed. 

7.3 Architecture Efficiency and Features 
In order to show the effectiveness of the architecture proposed in [5], the degree of efficiency 
of a specific architecture can be classified using the metric defined in [2]. This metric is 
defined as the portion of a system implementation which performs the actual payload work in 
comparison to the total implementation effort. This metric may be defined in terms of die 
area or in terms of power consumption. When defined as area efficiency, it may take the 
following form: 

payload
A

payload overhead

A
A A

η =
+

 

 
The efficiency of the SAMIRA-DSP is 41.36%. Hence 41.36% of its logic die area are 
dedicated to adders and multipliers, most of which is consumed by its 17 IEEE single 
precision floating point units. Figure 9 shows a layout picture of the SAMIRA DSP 
developed using the presented methodology. We are able to compute a 256-point floating 
point FFT within 8.5µs at 212Mhz clock rate on this architecture. The performance of other 
algorithms is going to be determined. The memory size and computational power is 
dimensioned for DVB-T, hence an OFDM System with 8192-point FFT capability.  
 

 
Figure 9: SAMIRA Processor 
 

8.0 Conclusions and Recommendations 
STA’s low-overhead philosophy, combined with SIMD parallelism and instruction 
compression allows for the construction of systems maximizing the hardware fraction 
dedicated to payload. The presented results show that the proposed approach enables the 
rapid implementation of efficient high-performance, low-power DSPs. Using an automatic 
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design flow which is utilizing the capabilities of the Synopsys Tool Chain a low power, yet 
high performance DSP could be developed in a very short time. The SAMIRA-DSP was 
designed, implemented and synthesized in 6 month by two engineers working full time on the 
project. Without any consulting support by SYNOPSYS, just using the SOLVENET database 
and application notes, it was possible to build a 0.13µm Floating-Point DSP.  
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